Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 16: 1301012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529054

RESUMO

Background: Vibration of one limb affects motor performance of the contralateral limb, and this may have clinical implications for people with lateralized motor impairments through vibration-induced increase in cortical activation, descending neural drive, or spinal excitability. Objective: The objective of this study was to evaluate the effects of acute biceps brachii tendon vibration on force steadiness and motor unit activity in the contralateral limb of persons with Parkinson's disease. Methods: Ten participants with mild to moderate Parkinson's disease severity performed a ramp, hold and de-ramp isometric elbow flexion at 5% of maximum voluntary contraction with the more-affected arm while vibration was applied to the distal biceps brachii tendon on the contralateral, less-affected arm. Using intramuscular fine wire electrodes, 33 MUs in the biceps brachii were recorded across three conditions (baseline, vibration, and post-vibration). Motor unit recruitment & derecruitment thresholds, discharge rates & variability, and elbow flexion force steadiness were compared between conditions with and without vibration. Results: Coefficient of variation of force and discharge rate variability decreased 37 and 17%, respectively in post-vibration compared with baseline and vibration conditions. Although the motor unit discharge rates did not differ between conditions the total number of motor units active at rest after de-ramp were fewer in the post-vibration condition. Conclusion: Contralateral tendon vibration reduces MU discharge rate variability and enhances force control on the more affected side in persons with Parkinson's disease.

2.
Neuropsychologia ; 192: 108733, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37956956

RESUMO

Researchers from multiple disciplines have studied the simulation of actions through motor imagery, action observation, or their combination. Procedures used in these studies vary considerably between research groups, and no standardized approach to reporting experimental protocols has been proposed. This has led to under-reporting of critical details, impairing the assessment, replication, synthesis, and potential clinical translation of effects. We provide an overview of issues related to the reporting of information in action simulation studies, and discuss the benefits of standardized reporting. We propose a series of checklists that identify key details of research protocols to include when reporting action simulation studies. Each checklist comprises A) essential methodological details, B) essential details that are relevant to a specific mode of action simulation, and C) further points that may be useful on a case-by-case basis. We anticipate that the use of these guidelines will improve the understanding, reproduction, and synthesis of studies using action simulation, and enhance the translation of research using motor imagery and action observation to applied and clinical settings.


Assuntos
Imagens, Psicoterapia , Imaginação , Humanos , Imagens, Psicoterapia/métodos , Poaceae
3.
Neurobiol Aging ; 133: 78-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918189

RESUMO

While capacity for motor skill acquisition changes with healthy aging, there has been little consideration of how age-related changes in brain function or baseline brain structure support motor skill acquisition. We examined: (1) age-dependent changes in functional reorganization related to frontoparietal regions during motor skill acquisition, and (2) whether capacity for motor skill acquisition relates to baseline white matter microstructure in frontoparietal tracts. Healthy older and younger adults engaged in 4 weeks of skilled motor practice. Resting-state functional connectivity (rsFC) assessed functional reorganization before and after practice. Diffusion tensor imaging indexed microstructure of a frontoparietal tract at baseline, generated by rsFC seeds. Motor skill acquisition was associated with decreases in rsFC in healthy older adults and increases in rsFC in healthy younger adults. Frontoparietal tract microstructure was lower in healthy older versus younger adults, yet it was negatively associated with rate of skill acquisition regardless of group. Findings indicate that age-dependent alterations in frontoparietal function and baseline structure of a frontoparietal tract reflect capacity for motor skill acquisition.


Assuntos
Envelhecimento Saudável , Substância Branca , Imagem de Tensor de Difusão , Destreza Motora , Encéfalo , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética
4.
Front Hum Neurosci ; 17: 1195996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841073

RESUMO

Introduction: A growing body of research has investigated how performing arts training, and more specifically, music training, impacts the brain. Recent meta-analytic work has identified multiple brain areas where activity varies as a function of levels of musical expertise gained through music training. However, research has also shown that musical sophistication may be high even without music training. Thus, we aim to extend previous work by investigating whether the functional connectivity of these areas relates to interindividual differences in musical sophistication, and to characterize differences in connectivity attributed to performing arts training. Methods: We analyzed resting-state functional magnetic resonance imaging from n = 74 participants, of whom 37 received performing arts training, that is, including a musical instrument, singing, and/or acting, at university level. We used a validated, continuous measure of musical sophistication to further characterize our sample. Following standard pre-processing, fifteen brain areas were identified a priori based on meta-analytic work and used as seeds in separate seed-to-voxel analyses to examine the effect of musical sophistication across the sample, and between-group analyses to examine the effects of performing arts training. Results: Connectivity of bilateral superior temporal gyrus, bilateral precentral gyrus and cerebellum, and bilateral putamen, left insula, and left thalamus varied with different aspects of musical sophistication. By including these measures of these aspects as covariates in post hoc analyses, we found that connectivity of the right superior temporal gyrus and left precentral gyrus relate to effects of performing arts training beyond effects of individual musical sophistication. Discussion: Our results highlight the potential role of sensory areas in active engagement with music, the potential role of motor areas in emotion processing, and the potential role of connectivity between putamen and lingual gyrus in general musical sophistication.

5.
Psychol Res ; 87(8): 2583-2593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37266707

RESUMO

Although motor learning can occur from observing others perform a motor skill (action observation; AO), observers' confidence in their own ability to perform the skill can be falsely increased compared to their actual ability. This illusion of motor competence (i.e., 'over-confidence') may arise because the learner does not gain access to sensory feedback about their own performance-a source of information that can help individuals understand their veridical motor capabilities. Unlike AO, motor imagery (MI; the mental rehearsal of a motor skill) is thought to be linked to an understanding of movement consequences and kinaesthetic information. MI may thus provide the learner with movement-related diagnostic information, leading to greater accuracy in assessing ability. The present study was designed to evaluate the effects of MI when paired with AO in assessments of one's own motor capabilities in an online observation task. Two groups rated their confidence in performing a juggling task following repeated observations of the action without MI (OBS group; n = 45) or with MI following observation (OBS+MI; n = 39). As predicted, confidence increased with repeated observation for both groups, yet increased to a greater extent in the OBS relative to the OBS+MI group. The addition of MI appeared to reduce confidence that resulted from repeated AO alone. Data support the hypothesis that AO and MI are separable and that MI allows better access to sensory information than AO. However, further research is required to assess changes in confidence that result from MI alone and motor execution.


Assuntos
Imaginação , Destreza Motora , Humanos , Movimento
6.
Hum Mov Sci ; 90: 103101, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247540

RESUMO

While motor imagery (MI) is thought to be 'functionally equivalent' with motor execution (ME), the equivalence of feedforward and feedback mechanisms between the two modalities is unexplored. Here, we tested the equivalence of these mechanisms between MI and ME via two experiments designed to probe the role of somatosensory processing (Exp 1), and cognitive processing (Exp 2). All participants were engaged in a previously established force-matching task adapted for MI. A reference force was applied (on scale of 1-10, with higher numbers indicative of greater force) to one index finger while participants matched the force with their opposite index finger via ME or MI (control conditions). Participants then rated the force on the same scale of 1-10. Exp 1: Participants (N = 27) performed the task with tactile stimulation (ME+TAC, MI+TAC) in addition to control conditions. Exp 2: Participants (N = 26) performed the task in dual-task conditions (ME+COG, MI+COG) in addition to control conditions. Results indicate that (Exp 1) tactile stimulation impaired performance in ME but not MI. Dual-task conditions (Exp 2) were not shown to impair performance in either practice modality. Findings suggest that while somatosensory processing is critical for ME, it is not for MI. Overall we indicate a functional equivalence between feedforward/back mechanisms in MI and ME may not exist.


Assuntos
Imaginação , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Imaginação/fisiologia , Imagens, Psicoterapia , Dedos/fisiologia , Retroalimentação
7.
Psychol Res ; 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36680584

RESUMO

It is well accepted that repeatedly imagining oneself acting without any overt behavior can lead to learning. The prominent theory accounting for why imagery practice is effective, motor simulation theory, posits that imagined action and overt action are functionally equivalent, the exception being activation of the end effector. If, as motor simulation theory states, one can compile the goal, plan, motor program and outcome of an action during imagined action similar to overt action, then learning of novel skills via imagery should proceed in a manner equivalent to that of overt action. While the evidence on motor simulation theory is both plentiful and diverse, it does not explicitly account for differences in neural and behavioural findings between imagined and overt action. In this position paper, we briefly review theoretical accounts to date and present a perceptual-cognitive theory that accounts for often observed outcomes of imagery practice. We suggest that learning by way of imagery reflects perceptual-cognitive scaffolding, and that this 'perceptual' learning transfers into 'motor' learning (or not) depending on various factors. Based on this theory, we characterize consistently reported learning effects that occur with imagery practice, against the background of well-known physical practice effects and show that perceptual-cognitive scaffolding is well-suited to explain what is being learnt during imagery practice.

8.
J Mot Behav ; 55(1): 1-17, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35786368

RESUMO

In adaptation learning, visual feedback impacts how adaptation proceeds. With concurrent feedback, a more implicit/feedforward process is thought to be engaged, compared to feedback after movement, which promotes more explicit processes. Due to discrepancies across studies, related to timing and type of visual feedback, we isolated these conditions here. Four groups (N = 52) practiced aiming under rotated feedback conditions; feedback was provided concurrently, immediately after movement (visually or numerically), or visually after a 3 s delay. All groups adapted and only delayed feedback attenuated implicit adaptation as evidenced by post-practice after-effects. Contrary to some suggestions, immediately presented offline and numeric feedback resulted in implicit after-effects, potentially due to comparisons between feedforward information and seen or imagined feedback.


Assuntos
Adaptação Fisiológica , Aprendizagem , Humanos , Retroalimentação , Retroalimentação Sensorial , Movimento , Desempenho Psicomotor , Percepção Visual
9.
Brain Commun ; 4(3): fcac142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694147

RESUMO

White matter hyperintensities negatively impact white matter structure and relate to cognitive decline in aging. Diffusion tensor imaging detects changes to white matter microstructure, both within the white matter hyperintensity and extending into surrounding (perilesional) normal-appearing white matter. However, diffusion tensor imaging markers are not specific to tissue components, complicating the interpretation of previous microstructural findings. Myelin water imaging is a novel imaging technique that provides specific markers of myelin content (myelin water fraction) and interstitial fluid (geometric mean T2). Here we combined diffusion tensor imaging and myelin water imaging to examine tissue characteristics in white matter hyperintensities and perilesional white matter in 80 individuals (47 older adults and 33 individuals with chronic stroke). To measure perilesional normal-appearing white matter, white matter hyperintensity masks were dilated in 2 mm segments up to 10 mm in distance from the white matter hyperintensity. Fractional anisotropy, mean diffusivity, myelin water fraction, and geometric mean T2 were extracted from white matter hyperintensities and perilesional white matter. We observed a spatial gradient of higher mean diffusivity and geometric mean T2, and lower fractional anisotropy, in the white matter hyperintensity and perilesional white matter. In the chronic stroke group, myelin water fraction was reduced in the white matter hyperintensity but did not show a spatial gradient in perilesional white matter. Across the entire sample, white matter metrics within the white matter hyperintensity related to whole-brain white matter hyperintensity volume; with increasing white matter hyperintensity volume there was increased mean diffusivity and geometric mean T2, and decreased myelin water fraction in the white matter hyperintensity. Normal-appearing white matter adjacent to white matter hyperintensities exhibits characteristics of a transitional stage between healthy white matter and white matter hyperintensities. This effect was observed in markers sensitive to interstitial fluid, but not in myelin water fraction, the specific marker of myelin concentration. Within the white matter hyperintensity, interstitial fluid was higher and myelin concentration was lower in individuals with more severe cerebrovascular disease. Our data suggests white matter hyperintensities have penumbra-like effects in perilesional white matter that specifically reflect increased interstitial fluid, with no changes to myelin concentration. In contrast, within the white matter hyperintensity there are varying levels of demyelination, which vary based on the severity of cerebrovascular disease. Diffusion tensor imaging and myelin imaging may be useful clinical markers to predict white matter hyperintensity formation, and to stage neuronal damage within white matter hyperintensities.

10.
Neurosci Lett ; 781: 136659, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35483502

RESUMO

When bookending skilled motor practice, changes in resting state functional magnetic resonance imaging (rs-fMRI; used to characterise synchronized patterns of activity when the brain is at rest) reflect functional reorganization that supports motor memory consolidation and learning. Despite its use in practice in numerous domains, the neural mechanisms underlying motor memory consolidation and learning that result from motor imagery practice (MIP) relative to physical practice are not well understood. The current study examined how rs-fMRI is modulated by skilled motor practice that results through either MIP or physical practice. Two groups of participants engaged in five days of MIP or physical practice of a dart throwing task. Performance and rs-fMRI were captured before and after training. Relative to physical practice, where focal changes in rs-fMRI within a cerebellar-cortical network were observed, MIP stimulated widespread changes in rs-fMRI within a frontoparietal network encompassing bilateral regions. Findings indicate functional reorganization that supports motor memory consolidation and learning is not equivalent across practice modalities. Ultimately, this work provides new information regarding the unique neural underpinnings MIP relies on to drive motor memory consolidation and learning.


Assuntos
Mapeamento Encefálico , Consolidação da Memória , Encéfalo , Humanos , Aprendizagem , Imageamento por Ressonância Magnética/métodos
11.
Exp Brain Res ; 239(12): 3649-3659, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34609545

RESUMO

Motor imagery (MI) and physical practice (PP) have been seen as parallel processes that can drive acquisition of motor skills. Emerging evidence, however, suggests these two processes may be fundamentally different, whereby MI-based motor skill acquisition relies more on effector-independent encoding of movement relative to PP. This alternate view is supported by evidence where real and virtual lesions to brain areas involved in visuospatial processing impair MI-based skill acquisition, and via behavioural studies showing perceptual, but not motor, transfer impairs skill acquisition via MI whereas this effect is reversed in PP. This study further investigated the degree to which MI utilizes effector-independent encoding of movement by investigating the role of the supplementary motor area (SMA), an area involved in perceptual to motor transformations, in MI-based motor skill acquisition. Sixty-four participants completed a serial reaction time paradigm following assignment to one of four groups based on training modality (MI or PP) and stimulation type (sham stimulation or continuous theta burst stimulation to inhibit the SMA). Faster reaction times (RTs) to elements of a repeated sequence in comparison to randomly generated elements indicated that sequence-specific learning occurred. Learning occurred in both PP and MI, with the magnitude of learning significantly smaller in MI. Inhibitory stimulation impaired learning in both modalities. In the context of a framework that distinguishes effector-independent and -dependent components of learning, these findings indicate the SMA plays a role in developing motor chunks in both PP and MI facilitating effector-independent learning in both modalities.


Assuntos
Córtex Motor , Destreza Motora , Humanos , Imagens, Psicoterapia , Aprendizagem , Tempo de Reação
12.
Sci Rep ; 11(1): 17108, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429472

RESUMO

Exercise has emerged as an intervention that may mitigate age-related resting state functional connectivity and sensorimotor decline. Here, 42 healthy older adults rested or completed 3 sets of high-intensity interval exercise for a total of 23 min, then immediately practiced an implicit motor task with their non-dominant hand across five separate sessions. Participants completed resting state functional MRI before the first and after the fifth day of practice; they also returned 24-h and 35-days later to assess short- and long-term retention. Independent component analysis of resting state functional MRI revealed increased connectivity in the frontoparietal, the dorsal attentional, and cerebellar networks in the exercise group relative to the rest group. Seed-based analysis showed strengthened connectivity between the limbic system and right cerebellum, and between the right cerebellum and bilateral middle temporal gyri in the exercise group. There was no motor learning advantage for the exercise group. Our data suggest that exercise paired with an implicit motor learning task in older adults can augment resting state functional connectivity without enhancing behaviour beyond that stimulated by skilled motor practice.


Assuntos
Envelhecimento/fisiologia , Conectoma , Treinamento Intervalado de Alta Intensidade/métodos , Aprendizagem , Destreza Motora , Idoso , Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
13.
Neurorehabil Neural Repair ; 35(6): 513-524, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33825574

RESUMO

OBJECTIVE: Activity patterns across brain regions that can be characterized at rest (ie, resting-state functional connectivity [rsFC]) are disrupted after stroke and linked to impairments in motor function. While changes in rsFC are associated with motor recovery, it is not clear how rsFC is modulated by skilled motor practice used to promote recovery. The current study examined how rsFC is modulated by skilled motor practice after stroke and how changes in rsFC are linked to motor learning. METHODS: Two groups of participants (individuals with stroke and age-matched controls) engaged in 4 weeks of skilled motor practice of a complex, gamified reaching task. Clinical assessments of motor function and impairment, and brain activity (via functional magnetic resonance imaging) were obtained before and after training. RESULTS: While no differences in rsFC were observed in the control group, increased connectivity was observed in the sensorimotor network, linked to learning in the stroke group. Relative to healthy controls, a decrease in network efficiency was observed in the stroke group following training. CONCLUSIONS: Findings indicate that rsFC patterns related to learning observed after stroke reflect a shift toward a compensatory network configuration characterized by decreased network efficiency.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma , Destreza Motora/fisiologia , Rede Nervosa/fisiopatologia , Prática Psicológica , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem
14.
Front Hum Neurosci ; 15: 614452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613210

RESUMO

Visuomotor adaptation to novel environments can occur via non-physical means, such as observation. Observation does not appear to activate the same implicit learning processes as physical practice, rather it appears to be more strategic in nature. However, there is evidence that interspersing observational practice with physical practice can benefit performance and memory consolidation either through the combined benefits of separate processes or through a change in processes activated during observation trials. To test these ideas, we asked people to practice aiming to targets with visually rotated cursor feedback or engage in a combined practice schedule comprising physical practice and observation of projected videos showing successful aiming. Ninety-three participants were randomly assigned to one of five groups: massed physical practice (Act), distributed physical practice (Act+Rest), or one of 3 types of combined practice: alternating blocks (Obs_During), or all observation before (Obs_Pre) or after (Obs_Post) blocked physical practice. Participants received 100 practice trials (all or half were physical practice). All groups improved in adaptation trials and showed savings across the 24-h retention interval relative to initial practice. There was some forgetting for all groups, but the magnitudes were larger for physical practice groups. The Act and Obs_During groups were most accurate in retention and did not differ, suggesting that observation can serve as a replacement for physical practice if supplied intermittently and offers advantages above just resting. However, after-effects associated with combined practice were smaller than those for physical practice control groups, suggesting that beneficial learning effects as a result of observation were not due to activation of implicit learning processes. Reaction time, variable error, and post-test rotation drawings supported this conclusion that adaptation for observation groups was promoted by explicit/strategic processes.

15.
J Mot Behav ; 53(3): 316-323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32519923

RESUMO

Considerable evidence exists related to the behavioral outcomes of motor imagery-based training (MI). Comparatively, there is a relative gap in the literature on how corticospinal excitability, a precursor for experience-dependent plasticity, changes over the course of an MI session, and more specifically if there is an effect of varying the duration of the blocks in which MI is performed. As such, we probed corticospinal excitability during MI, whereby the duration of MI blocks within the session were manipulated yet total exposure to MI was kept constant. Participants performed a total of 24 min of MI of common motor tasks in blocks of 2, 4 or 6 min. Transcranial magnetic stimulation was used to assess corticospinal excitability throughout MI performance. All groups demonstrated increased corticospinal excitability over the session. Owing to a decrease in corticospinal excitability when engaging in 6 min blocks and the variability noted when engaging in 2 min blocks, findings suggest that MI performed in 4 min blocks may be preferable for the generation and maintenance of corticospinal excitability, at least relative to 2 and 6 min blocks. Overall, our findings provide physiological evidence that informs the structure of MI training sessions to optimize their effectiveness.


Assuntos
Potencial Evocado Motor , Imaginação , Humanos , Músculo Esquelético , Tratos Piramidais , Estimulação Magnética Transcraniana
16.
Sci Rep ; 10(1): 21335, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288785

RESUMO

While considered analogous to physical practice, the nature of imagery-based skill acquisition-specifically whether or not both effector independent and dependent encoding occurs through motor imagery-is not well understood. Here, motor imagery-based training was applied prior to or after physical practice-based training to probe the nature of imagery-based skill acquisition. Three groups of participants (N = 38) engaged in 10 days of training of a dart throwing task: 5 days of motor imagery prior to physical practice (MIP-PP), motor imagery following physical practice (PP-MIP), or physical practice only (PP-PP). Performance-related outcomes were assessed throughout. Brain activity was measured at three time points using fMRI (pre/mid/post-training; MIP-PP and PP-MIP groups). In contrast with physical practice, motor imagery led to changes in global versus specific aspects of the movement. Following 10 days of training, performance was greater when motor imagery preceded physical practice, although remained inferior to performance resulting from physical practice alone. Greater activation of regions that support effector dependent encoding was observed mid-, but not post-training for the PP-MIP group. Findings indicate that changes driven by motor imagery reflect effector independent encoding, providing new information regarding how motor imagery may be leveraged for skill acquisition.

17.
J Cogn Neurosci ; 32(8): 1590-1606, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32420839

RESUMO

Despite its reported effectiveness for the acquisition of motor skills, we know little about how motor imagery (MI)-based brain activation and performance evolves when MI (the imagined performance of a motor task) is used to learn a complex motor skill compared to physical practice (PP). The current study examined changes in MI-related brain activity and performance driven by an equivalent bout of MI- or PP-based training. Participants engaged in 5 days of either MI or PP of a dart-throwing task. Brain activity (via fMRI) and performance-related outcomes were obtained using a pre/post/retention design. Relative to PP, MI-based training did not drive robust changes in brain activation and was inferior for realizing improvements in performance: Greater activation in regions critical to refining the motor program was observed in the PP versus MI group posttraining, and relative to those driven via PP, MI led only to marginal improvements in performance. Findings indicate that the modality of practice (i.e., MI vs. PP) used to learn a complex motor skill manifests as differences in both resultant patterns of brain activity and performance. Ultimately, by directly comparing brain activity and behavioral outcomes after equivalent training through MI versus PP, this work provides unique knowledge regarding the neural mechanisms underlying learning through MI.


Assuntos
Imaginação , Destreza Motora , Encéfalo/diagnóstico por imagem , Humanos , Aprendizagem , Imageamento por Ressonância Magnética
18.
Brain Res ; 1720: 146310, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251906

RESUMO

Beyond the lack of overt movement in motor imagery (MI), MI is thought to be functionally equivalent to motor execution (ME). Two theories appear viable to explain the neural mechanism underlying the inhibition of movement in MI, with one suggesting the inhibition of movement in MI occurs early in the planning process, and the other suggesting it occurs after the planning for movement is compete. Here we sought to generate evidence related to the timing of movement inhibition in MI. Participants performed a motor task via MI and ME that had distinct preparation and performance phases, with brain activity obtained throughout. Analysis of sensor-level data was performed to isolate event related desynchrony (ERD) in the mu and beta frequency bands in both a sensorimotor and left parietal region of interest (ROI). The magnitude of ERD in the sensorimotor ROI was significantly greater in ME than MI during both the preparatory and performance phases. The reduced ERD in the mu and beta frequency bands in the sensorimotor ROI during the preparatory phase for MI, compared to ME, suggests that movement planning is inhibited (or at least reduced) in MI, contributing to the lack of movement. While past work has shown that the networks of functional brain activity underlying MI and ME are heavily overlapping, differences in the temporal dynamics of this activity suggest that MI and ME are not equivalent processes.


Assuntos
Imaginação/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Imagens, Psicoterapia , Masculino , Córtex Motor/fisiologia
19.
Neuropsychologia ; 127: 106-112, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30807756

RESUMO

The left inferior parietal lobe (IPL), a brain region localized to the ventro-dorsal stream, is known to be critical to motor imagery (MI) performance. Yet its specific role in processes underlying MI, namely the generation, maintenance, manipulation, and controllability of motor images, is conflicting in the literature. To determine the specific role of the left IPL in MI, the current study sought to examine the effect inhibition of the left IPL has on performance on two disparate measures thought to probe different MI processes within the same participants. Participants (N = 31) completed the hand laterality judgment task (HLJT), employed to probe processes related to manipulation and controllability, and mental chronometry, employed to probe processes related to generation and maintenance, after receiving either inhibitory transcranial magnetic stimulation to the left IPL (Active-TMS group), or with the coil angled away from the scalp (Sham group). Impaired performance on the HLJT was observed following active TMS relative to sham. Similar mental chronometry performance resulted regardless of left IPL inhibition. In showing that inhibition of the left IPL selectively disrupted performance on the HLJT but not mental chronometry, our findings indicate that the left IPL is specifically involved in image manipulation and controllability during MI. Ultimately, the current study extends our understanding of the role of the left IPL in MI.


Assuntos
Imaginação/fisiologia , Lobo Parietal/fisiologia , Mapeamento Encefálico , Feminino , Lateralidade Funcional/fisiologia , Humanos , Julgamento/fisiologia , Masculino , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Percepção do Tempo , Estimulação Magnética Transcraniana , Adulto Jovem
20.
Appl Physiol Nutr Metab ; 44(8): 869-878, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30649908

RESUMO

Aerobic exercise (AE) modulates cortical excitability. It can alter both corticospinal excitability and intra-cortical networks, which has implications for its use as a tool to facilitate processes such as motor learning, where increased levels of excitability are conducive to the induction of neural plasticity. Little is known about how different intensities of AE modulate cortical excitability or how individual-level characteristics impact on it. Therefore, we investigated whether AE intensities, lower than those previously employed, would be effective in increasing cortical excitability. We also examined whether the aerobic fitness of individual participants was related to the magnitude of change in AE-induced cortical excitability. In both experiments we employed transcranial magnetic stimulation to probe corticospinal excitability before and after AE. We show that 20 min of continuous moderate- (40% and 50% of heart rate reserve, HRR), but not low- (30% HRR) intensity AE was effective at increasing corticospinal excitability. We also found that while we observed increased corticospinal excitability following 20 min of continuous moderate-intensity (50% HRR) AE, aerobic fitness was not related to the magnitude of change. Our results suggest that there is a lower bound intensity of AE that is effective at driving changes in cortical excitability, and that while individual-level characteristics are important predictors of response to AE, aerobic fitness is not. Overall these findings have implication for the way that AE is used to facilitate processes such as motor learning, where increased levels of cortical excitability and plasticity are favourable.


Assuntos
Exercício Físico/fisiologia , Aptidão Física/fisiologia , Tratos Piramidais/fisiologia , Adulto , Potencial Evocado Motor , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...